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Abstract-The problem of two kinds of ellipsoidal inhomogeneities embedded in an elastic body is
formulated with an application to a hybrid (three-phase) composite, The analytical tool used in this study is
a combination of Eshelby's equivalent inclusion method [I] and Mori-Tanaka's back stress analysis [2], and
therefore the results are valid for large volume fraction of inhomogeneities. As a demonstration, two types
of hybrid composites are examined: (i) fiber-fiber; and (ii) fiber-particulate systems.

I. INTRODUCTION

When an ellipsoidal inhomogeneity is embedded in an infinite elastic body, several related
problems can be solved rather simply by Eshelby's equivalent inclusion method [1]. For
example, the overall stiffness of a two-phase composite material can be easily computed once
the corresponding eigenstrain is solved by this method.

However, when the volume fraction of inhomogeneity (filler) becomes large, Eshelby's
equivalent inclusion method must be modified so as to take into account the interaction among
inhomogeneities as well as that between an inhomogeneity and the outer boundary of the
composite. The effect of the above interactions have been known as "a back stress" to material
scientists. Mori and Tanaka[2] discussed suchoa problem within the framework of Eshelby's
equivalent inclusion method. In Mori-Tanaka's paper only one kind of inclusion was treated.

Recently Taya and Mura[3] have applied Mori-Tanaka's method to a penny-shaped crack at
a fiber end in a short-fiber reinforced composite to compute the energy release rate of the
fiber end crack and the weakened Young's modulus of the composite. In their model one kind of
inhomogeneity (fiber) was treated by Mori-Tanaka's back stress analysis.

Here we extend Mori-Tanaka's back stress analysis to hybrid (three-phase) composites
where two kinds of inhomogeneities are embedded in an infinite elastic body in order to obtain
the overall stiffness of the composite. To compute the overall stiffness of a hybrid composite,
one can also use a "self-consistent method" [4, 5]. However, it requires a numerical com
putation and also gives rise to inaccurate results when the stiffness of the constituent phases
differ from one another to a great extent, e.g. the case of soft matrix-rigid fiber, or fiber-crack
system. On the other hand, the present formulation gives us closed form results for the overall
stiffness. Hence the computation is simply a parametric one.

We first describe a theoretical formulation and then apply it to two types of hybrid
composites: (i) fiber-fiber; and (ii) fiber-particulate systems.

2. FORMULATION

Consider an infinite elastic body which contains infinite number of two kinds of in
homogeneities and is subjected to' the applied stress u~ as shown in Fig. I. For later
conveniences, the domains of two kinds of ellipsoidal inhomogeneties are denoted by 0) and O2

and that of the infinite body is denoted by D. Hence the domain of the matrix is D-0)-02' Note
that 0) can represent a particular inhomogeneity of type I or all inhomogeneities of type 1. This
is also the case with ~. Let the elastic constants of the matrix, and inhomogeneities 0) and O2

be C~k1' Cl/k1 and qkl' respectively. The volume fractions of 0) and ~ are denoted by /1 and /2,
respectively.

We assume in this paper that all inhomogeneities are aligned in the uniaxial loading direction

tThis research was supported by IVSF under Grant No. CME-7918249.
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1 1 ~ ~

Fig. I. A calculation model

~I

(say x3-axis). It should be noted that our formulation below is applicable to more general cases
of geometry. Further we assume that the three-phases (matrix, 0\ and O2) are linearly elastic
and isotropic.

Under the applied stress O'~ the average of the total stress in the matrix is given by
O'~ + (O'jj)M [2] and

(1)

where ttl is the average strain disturbance due to all 0\ and ~. Now introduce a single
inhomogeneity of type 1(0\) into the composite, then the equivalent inclusion method yields in
D

(2)

where O'IJ and Elj are the disturbance of the stress and strain due to this single 0 10 respectively.
E~ is the corresponding eigenstrain which has non-vanishing components in the domain of this
single 0\ and becomes zero outside this single 0\. For the entire domain D the following
relation always holds;

(3)

With eqn (3), eqn (2) yields

(4)

Following Eshelby[l], we have

(5)
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where SLmll is the EshelbY's tensor which depends on C?~ and the geometry of OJ' Since tbe
added single inhomogeneity 0 1 can represent any single Oh tbe domain OJ in tbe preceding
equations is meant for any inhomogeneity of type 1.

Next we add another single inhomogeneity of type 2 (~) to tbis composite system D. Then
we have in D

o 2 CO (0 N 2 **)CT/j+CTij= ij/d E/d+E/d+E/d-E/d

=C~/d(Et + E/d + E~).

With eqn (2), eqn (6) provides

E~ is again related to E:: as

(6)

(7)

in O2 (8)

where EZ* is tbe eigenstrain defined in ~, and S~mll depends on C?~ and the geometry of
inhomogeneity of type 2. Since the disturbed stress CTij must satisfy f veTij dV =0, we obtain

(9)

where ( ) denotes the volume averaged quantity.
Eliminating Ell and E~ through eqns (5) and (8), we have three unknow~s, i.e. EIJ', E: and E:*,

which will be solved by the three equations (eqns (2), (6) and (9». Once E~ and E~* are solved,
we can compute the overall stiffness of the composite by using tbe equivalence of the strain
energies:

Icc -I 0 0 lCo -I 0 0 +If 0 '"'2 jj/d CTjjCT/d = '2 jjkJ CTjjCT/d '2 ICTijElj

~I: 0 **+Z. 2CT' ijE Ij (10)

where C?~-I and C~-I are the .compliances of the matrix and the composite, respectively.
The details of the derivation of eqn (10) are given in Appendix A.

The computation of the eigenstrains and the overall stiffness of the composite are described
below for two types of hybrid composites: (i) fiber-fiber; and (ii) fiber-particulate systems. Let
tbe inhomogeneity of type 1 be fiber-I, and the inhomogeneity of type 2 be fiber-2 (fiber-fiber
system) or particulate (fiber-particulate system).

2.1 Computation of E~ and E:*
Referring to Fig. I, the non-vanishing applied stress is CT'~3 (denoted by CT'~ and all fibers are

aligned along the loading axis (x3-axis). Hence the non-vanishing components of E'/, En and f;/
are ij =II, 22 and 33. It is also noted that the system of Fig. 1 gives rise to a transverse
insotropy, i.e. Efl = E!2' ETT = E!! and Ell =En.

In setting ij = 11 and 33 in eqn (2), we obtain

(11)

(12)
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(13)

In eqn (13) A, IL are Lame constants, I' is Poisson's ratio, a is the aspect ratio of the fiber, and g
is defined in Appendix B. The subscripts 0 and 1 in the above equation denote the matrix and
fiber-I, respectively.

Noting that E~I =- I'ouo/Eo and E~3 =uO/Eo where Eo is the matrix Young's modulus, we
solve for Ei. and Ej3 in eqns (11) and (12) to obtain

where

A* =ci1ci2-ci1ci2
BI*=2(Ci2 - DI*ci2)
B2*= D2*ci2 - C~2

Bl =2(D1*cil - cil)
Bl =C~I - ~*cil'

(14)

(15)

(16)
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The stress disturbed by OJ, uti is obtained by eqns (4), (5), (14) and (15) as

where

551

(17)

(18)

(19)

and Still is the Eshelby's tensor for fiber-l and is given in Appendix B.
Next we solve for Efl* and Ef3* in eqns (6) and (8), and for utI and UJ3 in eqn (7), The

solution procedure is the same as in the foregoing steps except for eqns (13) and (19), which will
be obtained below, depending on the type of inhomogeneity ~.

(a) O2 denotes fiber phase. The solutions corresponding to eqns (14) and (15) are

** B** 0 (B** B**)** B 1 - 2 - 00 2 - Jlo I
Ell = A**EII +A**E33 +Eo A** (20)

(21)

where the superscript ** denotes the inhomogeneity O2, In the above equations A**. Bf*, B:*,
Bf* and B:* are given by eqn (16) where C~· and Dr are replaced by C:* and Dr* respectively.

The coefficients C:* and Dr* are of the same forms as those given by eqn (17) except that
the superscript * and the subscript 1are replaced by ** and 2, respectively.
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Likewise, the disturbed stress u~ is given by

2 {2 (H**B** H** **)}~= + II 1 + 12 B3 -
1-'0 (1- 2110) A** Ell

{
H**B** ** **)}+ 2110 +( II 2 +H 12 B4 _

(1- 2110) A** E33

{H
**(B** **) H**(B** B**)}+ 0'0 II 2 - lIoB I + 12 4 - 110 3

Eo A** A**

2 { ** ** ** **}Un = 4110 +(H 21 B 1 +H 22 B3 _
1-'0 (1- 2110) A** Ell

{
(1 * ** ** *)}+ 2 - 110) + (H 21B2 + H 22 B4 _

(1- 2110) A** En

O{H** ** B** H**(B** **)}+E:... 2dB2 - 110 1 ) + 22 4 -lIoB3
& A~ A~

(22)

(23)

where H3* is given by eqn (19) and S)jkl is replaced by S~kl which is given in Appendix B.

(b) O2 denotes partuculate phase. A particulate filler is assumed to be of spherical shape.
The expressions for En and u~ are again given by eqns (20H23) except that the coefficients en
and Hn are now given by

n2* = (1 + 110) + 2(7 - 5110)(1-'2 - JLo) + (Ao+ 2JLo )
3(1- 110) 15(1- 110) A2 - Ao A2 - Ao

H**- 2(9+5110)
II - - 15(1 - 110)

Htl = - 2(1 +5110)
15(1 - 110)

H~t =2H:2*

** 16
H 22 = 15(1-110)

From eqn (1), we have
(UII)M 2 _ 2110_
--;;- = (1- 2110{1I +(1- 2110)E33

(U33)M _ 4110 _ +2(1- 110)_
--;;- - (1- 2110)EII (1- 2vo)En.

(24)

(25)

(26)

(27)

After having expressed (Ujj)M, (O')j) and (u1j) in terms of i ji we substitute them into eqn (9) to
solve for Ell and i 33:

(28)

(29)
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where S, SI and S2 are given in Appendix C. With eqns (28) and (29), we can obtain eigenstrains
* d **Eij an Ejj as

(30)

(31)

(32)

(33)

(34)

2.2 Computation 0/ longitudinal Young's modulus EL 0/ a hybrid composite
When all fibers are aligned in the uniaxial loading direction, the equation of the equivalence

of strain energy (eqn (to» is reduced to

02 02 0 */ 0 **/.E:--2:....+ U Ell 1+ U Ell 2
2EL - 2Eo 2 2'

With eqns (31) and (33), eqn (34) provides us with the longitudinal Young's modulus EL of the
hybrid composite:

(35)

where

(36)

It should be noted that S, SI and S2 are also functions of /1 and /2 (see Appendix C). When the
two kinds of fillers are identical, Le. 0 1=~ and the volume fraction of the filler is small, one
can easily obtain the results based on Eshelby's equivalent inclusion method (without back
stress analysis).

3. RESULTS AND DISCUSSION

Since a hybrid composite consists of three phases, a number of parameters characteristic of
the three phases must be specified in order to compute Ev Here we set Poisson's ratio of the
matrix as 0.35 and those of two kinds of fillers as 0.3 throughout our computation. As a
demonstration of our results, the following cases are computed:

(i) Case-I: Compute EdEofor given stitInesses of the fillers, (EIEo)1 =50 and (E/Eo)2 =100,
and given ratio of the volume fraction of the fillers, /2//1=3 for various aspect ratios of the
fibers.

(ii) Case-2: Compute EdEo of a fiber-particulate composite for (EIEO)I =50, (E/Eoh =50
and /1 =/2'

The results of Case-l are shown as solid curves in Fig. 2 where EdEo computed by a "rule
of mixtures" which can be obtained asymptotically by increasing the aspect ratios of fibers, is
shown as a dotted line. It is noted in Fig. 2 that the aspect ratio lId being 1corresponds to the
case of a particulate filler.

The results of Case-2 are shown in Fig. 3 where two extreme cases are also investigated,
Le. two kinds of fillers are identical and they are either of the fiber type or of the particulate
type. It is concluded from Fig. 3 that "a volume average approach" to combine the results of

ss Vol. 11. No. 6-B
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Fig. 2. Longitudinal Young's modulus of a hybrid composite vs. volume fraction of fillers with h = 3!J.
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(Al)

fiber only and particulate only does not provide the results of fiber-particulate system. In other
words, if it does, then the curve of fiber-particulate system would have been located exactly in
the middle between those cases of fiber only and particulate only since 11 ::: 12' Also the results
based on a "rule of mixtures" are plotted as a dotted line in Fig. 3.

Finally it should be noted that the present formulation can be easily extended ttl the case of
more than three-phase materials since all the interactions among various kinds of inhomogeneity
are carried by iij (see eqns (2) and (6». Hence in the equation of the equivalence of the strain
energies (eqn (10», an addition of another kind of inhomogeneity simply leads to that of another
term carrying the corresponding eigenstrain to the r.h.s. of eqn (10).
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APPENDIX A
Astrain energy W of a hybrid composite containing two kinds of inhomogeneities (fi. and~ is given by

W = iln(ut +UII)(II!i +My +lItJ) dV

where the domain of integration is D (entire body) including the matrix, O. and ~, UII and ulJ are the disturbances of the
stress and strain (displacement gradient) due to inhomogeneities and U, is the average displacement in the matrix and the
symmetric component of its gradient is ill (see eqn (1». We expand the integrand in eqn (AI) as

(A2)

Note that

(Al)

since U'/J = 0 in Dand Uqftl = 0 on IDI, where JDI is the boundary of D. In the derivation of (A3) Gauss' divergence theorem
has been used.
• Next c?nsider the second term on the right hand side of eqn (A2). This term can be rewritten as in terms of eiaenstrain

eil dfined 10 O.

where the Eshelby's equivalent inclusion method is applied;

Uij = CC'/Jt/(li'J +lItJ - el) in D.

(A4)

(AS)

The first term on the right hand side of eqn (A4) vanishes upon integration over D by the same token leading to eqn (A3).
Thus, a strain energy W (eqn (AI) is simplified as

W=itutlltdV+!t ute'dV

S· h kind f' . * d ** *. .IDce we ave two s 0 elgenstrains EII an Ell' ellis gIVen by

(A6)

inO.
in~

in D-fil~' (A7)

With eqn (A7), eqn (A6) is further reduced to

(AS)
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Astrain energy Wcan be interpreted as per a unit volume. Then. we obtain from (A8)

(A9)

Under the applied stress u». a composite bas a strain energy l/2CfItJ-Iutut where Ctju-I is the compliance of the
composite. Thus we can obtain tbe equation of tbe equivalence of strain energy (eqn (10».

APPENDIX B SHELBY'S TENSORS

For a fiber-like inclusion. S!.w are given by

wbere Jlo is Poisson's ratio of a matrix, a is aspect ratio of a fiber ( .. lId), and g is given by

For spberical inclusion. non vanishing S~ are

S2 -S2 -S2 _ (7- 5J10)
II IJ - 2222 - 3333 - 15(1- Jlo)

S2 S2 S2 (1- SJlo)
lI22 .. 2233 .. 3311 = - 15(1 - Jlo)

S2 -S2 -S2 _(4-5J10)
1212 - 1323 - 3131 - 15(1- Jlol"

APPENDIXC

(BI)

(B2)

(B3)

Asubstitution of (uqh", (uL) and (ui> into eqn (9) yields the value of S, SI and s,. defined in eqns (28) and (29) as

where

S = QlI~ - <h.. QI2

SI = Q\2R2 - ~RI

S2" <h.IRI- QlIR2

* * * * ** ** ** **Q _2(1-fl-t~+f{_2_+(H!lBI +H 12B3 )} +f{_2_+(HIJ B1 +H12 B3 )}
II (1- 2J10) • (1- 2110) A* 2 (1- 2J10) A**

(CI)

f f (H"'B * H*B *)} ** ** ** **<h. = 4J10<1-\- ~+f{~+ 21 1+ 22 3 +f{~+(H2\ B1 +Hp B3 )} (C2)
I (1-2110) I (1- 2J10) A* 2 (1- 2vo) A**
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* * ** ** ** **fl. =2(I-VoXl-iI-f~+1 {2(1- po)+(H:nBz'+HpBl)} +1 {2(I-VO>+(H21 B2 +Hp B4 )}
"lP (1-2...0) I (1-2...0) A' z (l-2J1o) A"

563


